

TEXAS A&M UNIVERSITY Lab Quality Systems

Proficiency Testing

Inter-laboratory comparisons are widely used for a number of purposes

ISO 17043:2010

Tim Herrman
Professor, State Chemist and Director
Office of the Texas State Chemist

TEXAS A&M AGRILIFE RESEARCH

TEXAS A&M UNIVERSITY Lab Quality Systems

Proficiency Testing

One of the big 3 – along with uncertainty and traceability

2

TEXAS A&M UNIVERSITY Lab Quality Systems

APTECA Proficiency Testing Program
Corn Meal Sample #4

3

TEXAS A&M UNIVERSITY Lab Quality Systems

Purposes of Proficiency Testing

- a) Evaluation of the performance of laboratories for specific tests or measurements and monitoring laboratories' continuing performance
- b) Identification of problems in laboratories and initiation of actions for improvement which may be related to inadequate test or measurement procedures, effectiveness of staff training and supervision or calibration of equipment
- c) Establishment of the effectiveness and comparability of test and measurement methods

ISO 17043:2010

4

TEXAS A&M UNIVERSITY Lab Quality Systems

Purposes of Proficiency Testing (cont'd)

- d) Provision of additional confidence to laboratory customers
- e) Identification of inter-laboratory differences
- f) Education of participating laboratories based on the outcomes of such comparisons
- g) Validation of uncertainty claims

ISO 17043:2010

5

TEXAS A&M UNIVERSITY Lab Quality Systems

Proficiency Provider

OFFICE OF THE TEXAS STATE CHEMIST
Texas State Chemist and Director, Office of the Texas State Chemist
100 AgriLife Research and Extension Building
1912 Speedway, College Station, TX 77843-2219
Phone: 979.845.5000 | Fax: 979.845.5001 | Email: txstatechem@tamu.edu

OFFICE OF THE TEXAS STATE CHEMIST
Texas State Chemist and Director, Office of the Texas State Chemist
100 AgriLife Research and Extension Building
1912 Speedway, College Station, TX 77843-2219
Phone: 979.845.5000 | Fax: 979.845.5001 | Email: txstatechem@tamu.edu

Proficiency testing

July 2015 APTECA Sample

COMESA Laboratories Survey Results

Laboratory	Mean Result	NA	Bias	Z value
1	32	NA	+2	7.84
2	NA	NA	NA	NA
3	NA	NA	NA	NA
4	91	NA	-62	-0.81
5	22.6	NA	-6.4	-0.81
6	16.2	NA	-12.8	-1.62
7	35	NA	+6	0.76
8	71	NA	+42	5.31
9	44	NA	+15.1	1.91
10	36	NA	+7	0.88
11	14	NA	-14.9	-1.88
12	NA	NA	NA	NA
13	38	NA	+7	0.88
14	38.3	NA	+9.3	1.16
15	1.3	NA	-27.7	-3.56

Participant

$Z = (x - x_{\mu}) / \sigma_p$

$RSD = 67\%$

$RSD_R = 2^{(1-0.5\log C)}$

Assigned value
Calculated standard deviation

The assigned value is determined by the mean of the mean results of the laboratories that participated in the proficiency testing. The assigned standard deviation was determined by the standard deviation of the mean results of the laboratories that participated in the proficiency testing.

1

TEXAS A&M UNIVERSITY Lab Quality Systems

Harmonized Protocol for Proficiency Testing

"It is important to emphasize that the interpretation of z-scores is not generally based on summary statistics that describe the observed participant results." (3.1.2 p 157)

A score of zero implies a perfect result.

Approximately 95% of z-scores fall between -2 and +2.

A score outside the range from -3 to 3 should be investigated.

A score in the ranges -2 to -3 and 2 to 3 would be expected about 1 in 20.

7

TEXAS A&M UNIVERSITY Lab Quality Systems

Harmonized Protocol for Proficiency Testing

<u>Assigned Value</u>	<u>Consensus – Disadvantages</u>
<ul style="list-style-type: none"> □ An assigned value and uncertainty may be obtained by a suitably qualified measurement laboratory using a method with sufficiently small uncertainty □ Certified reference material 	<ul style="list-style-type: none"> □ Not independent of participant results <ul style="list-style-type: none"> ▪ Bias for the population may not be detected ▪ Participants whose results are unbiased may unfairly receive extreme z-scores □ Their uncertainty may be too large when the number of labs is small

8

TEXAS A&M UNIVERSITY Lab Quality Systems

Assigned Mean – OTSC AAS

APTECA Proficiency #4 (N2013-001095)

	B1	B2	G1	G2	Total
24.3	2.0	0.0	0.0		26
26.1	2.3	0.0	0.0		28
28.8	2.4	0.0	0.0		31
24.9	2.2	0.0	0.0		27
24.5	2.7	0.0	0.0		27
23.8	2.4	4.0	0.0		30
26.7	2.8	0.0	0.0		30
27.3	2.7	4.2	0.0		34
33.9	2.9	0.0	0.0		37
27.3	2.7	0.0	0.0		30
22.3	2.3	0.0	0.0		25
21.8	2.2	0.0	0.0		24
Average	26.0	2.5	0.7	0.0	29
sd	3.3	0.3	1.6	0.0	3.8
RSD (%)	12.6	12.0	233.6		12.9

9

TEXAS A&M UNIVERSITY Lab Quality Systems

Horwitz Function to Calculation Standard Deviation

aflatoxin (ppb)	Mass fraction	Log	Expected RSD (%)	Standard Deviation
10	0.00000001	-8.0	32.0	3.2
29	0.00000029	-7.5	27.3	7.9
100	0.00000001	-7.0	22.6	22.6
300	0.00000003	-6.5	19.2	57.5

The Horwitz function is often regarded as defining fitness-for-purpose in the food sector Harmonized Protocol for proficiency testing p 163

Reference laboratory standard deviation = 3.8
COMESA laboratories' consensus standard deviation = 24.0

10

TEXAS A&M UNIVERSITY Lab Quality Systems

Office of the Texas State Chemist

Laboratory Proficiency Program Results for the 2013-2014 Proficiency Testing Program

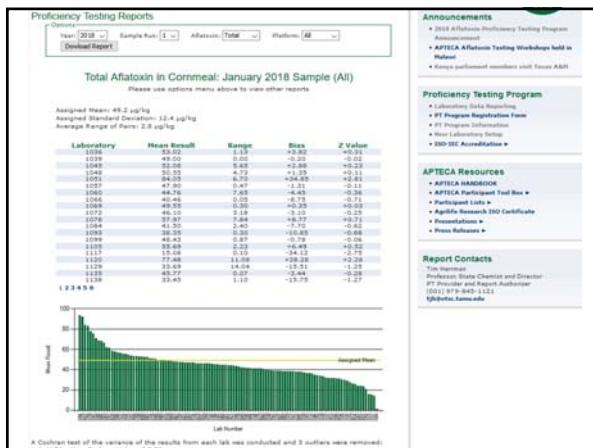
July 2014, APTCA Sample # COMESA Laboratories

Laboratory	Mass fraction	Range	Mean	Z value
1	20.4	2	-1.4	0.18
2	1.0	0	-2.8	-0.54
3	12.5		-16.5	-0.98
4	60.0	4	-31	3.82
5	19.0	0.2	-10	-1.26
6	13.3	0.8	-15.7	-1.98
7	25.0	2	-4.2	-0.51
8	50.5	7	-21.5	2.72
9	23.05	0.8	-10.5	-0.11
10	23.4	1.2	-6.1	-0.43
11	23.9	4.0	-8.8	-0.89
12	23.8	3.0	-3.17	-0.46
13	96	0	-67	0.47
14	42.7	9	-13.7	1.73
15	6.05	1.8	-22.85	-2.80

This assigned value was determined by the OTSC reference laboratory using an HPLC method. All laboratories were asked to use the same method for proficiency testing. The assigned value is the mean of the reference laboratory's mean and the mean of the other laboratories' mean. The assigned value is the mean of the reference laboratory's mean and the mean of the other laboratories' mean.

Assigned Mean: 29
Assigned RSD: 3.8
Average Range of Duplicate: 4.1

RSD 78%


11

TEXAS A&M UNIVERSITY Lab Quality Systems

Kenya Milling Industry Performance

Proficiency Sample Number	RSD (%)
APTECA 1	37%
APTECA 2	25%
APTECA 3	15%
APTECA 4	15%

12

TEXAS A&M UNIVERSITY Lab Quality Systems

Summary

- Proficiency testing for aflatoxin testing in Kenya improved accuracy of laboratories
- Assigned mean and standard deviation is used by the Texas A&M Aflatoxin Proficiency Testing and Control in Africa, Asia, Americas and Europe (APTECA) program
- The ISO 17043 standard for proficiency testing provides a common format and requirements for this program along with the International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories
- Preparation of proficiency testing material should follow the same protocol for developing reference material

14

TEXAS A&M UNIVERSITY Lab Quality Systems

Contact Information:
tjh@otsc.tamu.edu

Tim Herrman
Professor, State Chemist and Director
Office of the Texas State Chemist

TEXAS A&M
AGRI-LIFE
RESEARCH